6 research outputs found

    Analysis of a Vendor Managed Consignment Inventory System with Kan-ban Withdrawals and Payment Delays

    Get PDF
    Vendor Managed Inventory (VMI) System with Consignment Inventory (CI) policy is a solution for many supply chain leaders in a highly competitive market. In this paper, totally eight different inventory supply chain models are studied. The profit function of supplier and manufacturer in different environments are compared in order to show the profitability of the overall supply chain management system in a manufacturing industry with different time horizons. The inventory systems are applied on a supply chain consisting of a single supplier and a manufacturer. The main focus of this study is to analyze the effect of payment deferral and the time value of money in push and pull (Kanban) manufacturing systems when VMI-CI policy is applied

    Image and structured data analysis for prognostication of health outcomes in patients presenting to the ED during the COVID-19 pandemic.

    No full text
    BACKGROUND: Patients admitted to the emergency department (ED) with COVID-19 symptoms are routinely required to have chest radiographs and computed tomography (CT) scans. COVID-19 infection has been directly related to the development of acute respiratory distress syndrome (ARDS) and severe infections could lead to admission to intensive care and increased risk of death. The use of clinical data in machine learning models available at time of admission to ED can be used to assess possible risk of ARDS, the need for intensive care (admission to the Intensive Care Unit; ICU) as well as risk of mortality. In addition, chest radiographs can be inputted into a deep learning model to further assess these risks. PURPOSE: This research aimed to develop machine and deep learning models using both structured clinical data and image data from the electronic health record (EHR) to predict adverse outcomes following ED admission. MATERIALS AND METHODS: Light Gradient Boosting Machine (LightGBM) was used as the main machine learning algorithm using all clinical data including 42 variables. Compact models were also developed using the 15 most important variables to increase applicability of the models in clinical settings. To predict risk (or early stratified risk) of the aforementioned health outcome events, transfer learning from the CheXNet model was also implemented on the available data. This research utilized clinical data and chest radiographs of 3,571 patients, 18 years and older, admitted to the emergency department between 9th March 2020 and 29th October 2020 at Loyola University Medical Center. MAIN FINDINGS: The research results show that we can detect COVID-19 infection (AUC = 0.790 (0.746-0.835)), predict the risk of developing ARDS (AUC = 0.781 (0.690-0.872), risk stratification of the need for ICU admission (AUC = 0.675 (0.620-0.713)) and mortality (AUC = 0.759 (0.678-0.840)) at moderate accuracy from both chest X-ray images and clinical data. PRINCIPAL CONCLUSIONS: The results can help in clinical decision making, especially when addressing ARDS and mortality, during the assessment of patients admitted to the ED with or without COVID-19 symptoms

    Discrepancy between perceptions and acceptance of clinical decision support Systems: implementation of artificial intelligence for vancomycin dosing

    No full text
    Abstract Background Artificial intelligence (AI) tools are more effective if accepted by clinicians. We developed an AI-based clinical decision support system (CDSS) to facilitate vancomycin dosing. This qualitative study assesses clinicians' perceptions regarding CDSS implementation. Methods Thirteen semi-structured interviews were conducted with critical care pharmacists, at Mayo Clinic (Rochester, MN), from March through April 2020. Eight clinical cases were discussed with each pharmacist (N = 104). Following initial responses, we revealed the CDSS recommendations to assess participants' reactions and feedback. Interviews were audio-recorded, transcribed, and summarized. Results The participants reported considerable time and effort invested daily in individualizing vancomycin therapy for hospitalized patients. Most pharmacists agreed that such a CDSS could favorably affect (N = 8, 62%) or enhance (9, 69%) their ability to make vancomycin dosing decisions. In case-based evaluations, pharmacists' empiric doses differed from the CDSS recommendation in most cases (88/104, 85%). Following revealing the CDSS recommendations, we noted 78% (69/88) discrepant doses. In discrepant cases, pharmacists indicated they would not alter their recommendations. The reasons for declining the CDSS recommendation were general distrust of CDSS, lack of dynamic evaluation and in-depth analysis, inability to integrate all clinical data, and lack of a risk index. Conclusion While pharmacists acknowledged enthusiasm about the advantages of AI-based models to improve drug dosing, they were reluctant to integrate the tool into clinical practice. Additional research is necessary to determine the optimal approach to implementing CDSS at the point of care acceptable to clinicians and effective at improving patient outcomes
    corecore